Integral equation methods for elliptic problems with boundary conditions of mixed type
نویسنده
چکیده
Laplace’s equation with mixed boundary conditions, that is, Dirichlet conditions on parts of the boundary and Neumann conditions on the remaining contiguous parts, is solved on an interior planar domain using an integral equation method. Rapid execution and high accuracy is obtained by combining equations which are of Fredholm’s second kind with compact operators on almost the entire boundary with a recursive compressed inverse preconditioning technique. Then an elastic problem with mixed boundary conditions is formulated and solved in an analogous manner and with similar results. This opens up for the rapid and accurate solution of several elliptic problems of mixed type.
منابع مشابه
Numerical solution of nonlinear fractional Volterra-Fredholm integro-differential equations with mixed boundary conditions
The aim of this paper is solving nonlinear Volterra-Fredholm fractional integro-differential equations with mixed boundary conditions. The basic idea is to convert fractional integro-differential equation to a type of second kind Fredholm integral equation. Then the obtained Fredholm integral equation will be solved with Nystr"{o}m and Newton-Kantorovitch method. Numerical tests for demo...
متن کاملIntegral Equation Formulations for Geodetic Mixed Boundary Value Problems
We consider mixed boundary value problems in Physical Geodesy and study possibilities in order to transform them into a system of integral equations over the boundary of the domain. The system of integral equations can be solved numerically, by, e.g. boundary element methods, provided that (a) the mixed boundary value problem is uniquely solvable, (b) the system of integral equations is equival...
متن کاملSolving Some Initial-Boundary Value Problems Including Non-classical Cases of Heat Equation By Spectral and Countour Integral Methods
In this paper, we consider some initial-boundary value problems which contain one-dimensional heat equation in non-classical case. For this problem, we can not use the classical methods such as Fourier, Laplace transformation and Fourier-Birkhoff methods. Because the eigenvalues of their spectral problems are not strictly and they are repeated or we have no eigenvalue. The presentation of the s...
متن کاملA MIXED PARABOLIC WITH A NON-LOCAL AND GLOBAL LINEAR CONDITIONS
Krein [1] mentioned that for each PD equation we have two extreme operators, one is the minimal in which solution and its derivatives on the boundary are zero, the other one is the maximal operator in which there is no prescribed boundary conditions. They claim it is not possible to have a related boundary value problem for an arbitrarily chosen operator in between. They have only considered lo...
متن کاملNumerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 228 شماره
صفحات -
تاریخ انتشار 2009